How to Deploy TradingAgents.jl on a VPS โ Complete Step-by-Step Guide
OriginalAbout 2 min
๐ง How to Deploy TradingAgents.jl on a VPS โ Complete Step-by-Step Guide
๐งพ Introduction: Why Deploy TradingAgents.jl on a VPS?

TradingAgents.jl is a reinforcement learning environment built in Julia for designing, simulating, and testing trading strategies. Running it on a VPS offers several advantages over a local machine:
- 24/7 Stable Operation: Ideal for long-running training or simulation tasks.
- Remote Access: Easily manage from anywhere.
- Offloads Local Resources: Keeps your personal machine free for other work.
๐งฐ Prerequisites
Item | Description |
---|---|
A VPS | Recommended: Ubuntu 22.04 with at least 1 vCPU and 2GB RAM |
SSH client | Use ssh on macOS/Linux or MobaXterm/PuTTY on Windows |
Julia | Download from julialang.org |
๐งฉ Step 1: Connect to VPS and Set Up Base Environment
1. SSH into Your VPS
ssh root@your-vps-ip
2. Update System Packages
sudo apt update && sudo apt upgrade -y
3. Install Dependencies
sudo apt install wget curl git build-essential python3-pip tmux -y
๐พ Step 2: Install Julia
1. Download and Install Julia
wget https://julialang-s3.julialang.org/bin/linux/x64/1.10/julia-1.10.2-linux-x86_64.tar.gz
tar -xvzf julia-1.10.2-linux-x86_64.tar.gz
sudo mv julia-1.10.2 /opt/
sudo ln -s /opt/julia-1.10.2/bin/julia /usr/local/bin/julia
2. Verify Installation
julia --version
Expected output: julia version 1.10.2
๐ฆ Step 3: Install TradingAgents.jl and Dependencies
Launch Julia:
julia
Inside the Julia REPL, run:
julia
using Pkg
Pkg.update()
Pkg.add("TradingAgents")
Pkg.add("IJulia") # Optional for Jupyter notebook
Pkg.add("Flux") # Required for training neural nets
๐งช Step 4: Test Example
Run this basic example in Julia REPL:
using TradingAgents
env = OrderBookEnv()
reset!(env)
step!(env, (LimitOrder(-1, 10.0, 1),))
๐ Step 5: Upload or Write Training Script
Save your agent training script as run_agent.jl. (You can use the full script I provided earlier.)
Upload Script from Local to VPS:
scp run_agent.jl root@your-vps-ip:/root/
๐ฅ๏ธ Step 6: Run Script with Tmux for Long Training
Use tmux to keep your session alive:
tmux new -s trading
julia run_agent.jl
To detach from tmux:
# Press Ctrl + B, then D
Reattach later with:
tmux attach -t trading
๐ (Optional) Step 7: Deploy Jupyter Notebook
1. Install Jupyter
pip3 install notebook
2. Run Jupyter
jupyter notebook --ip=0.0.0.0 --port=8888 --no-browser
Then access it via your browser:
http://your-vps-ip:8888
You can protect it with a token or password.
๐ง Step 8: After Deployment Tips
Use BSON.jl to save trained models
Log trading performance per episode
Connect with live trading APIs (e.g., Binance) if deploying to real market
๐งพ Summary: VPS Deployment Flowchart
- Purchase a VPS (Ubuntu preferred)
- SSH login
- Install Julia + dependencies
- Add TradingAgents.jl
- Upload your training script
- Use tmux to run long tasks
- (Optional) Deploy Jupyter Notebook
๐ Appendix: Recommended VPS Providers (Julia-compatible)
Provider | Highlights | Link |
---|---|---|
LightNode | Hourly billing, 40+ global locations, Linux | https://www.lightnode.com/ |
Vultr | Developer-friendly, multiple global locations | https://www.vultr.com/ |
DigitalOcean | Great UI/UX, reliable for dev environments | https://www.digitalocean.com/ |